
First Identified

2014

Several
major updates

2015, 18, 19, 20

Infrastructure taken down by law
enforcement

Jan 2021

Resurfaced with
some new techniques

14 Nov 2021

How Emotet Uses Cryptography

© VMRay GmbH. All rights reserved.

1vmray.com

What is Emotet?
Emotet is a malware family.
First, it was functioning
primarily as a banking trojan
that attempted to steal financial
credentials. Later on, it was
adapted into a robust delivery
mechanism for spam and even
other malware, including the
Qakbot and Trickbot Trojan(s),
as well as the Ryuk ransomware.

The group behind Emotet is the prime example of a very successful criminal enterprise.
Emotet started out as a banking malware but over time evolved into a large botnet providing
something akin to a malicious IaaS (Infrastructure-as-a-Service).

It started providing access to its extensive list of infected devices to other threat actors and their
malware (Trickbot, Dridex, IcedID). It started acting as their loader. Since the beginning of 2021, after
a longer “break” which was the consequence of a coordinated take down of Emotet’s infrastructure
by the law enforcement, Emotet resurfaced on the 14th of November 2021. Actively trying to rebuild
its own infrastructure utilizing Trickbot. Many of the techniques stayed the same, but there are also
some important differences.

The Emotet binaries, which were distributed starting from November 2021, come with two embedded
elliptic-curve-based public keys of the server. The previous versions were using RSA as the primary
asymmetric scheme. An RSA public key was embedded in the sample and used to encrypt the
generated AES-128 key before sending it back to its C2. For message integrity, the packet was hashed
with the SHA1 algorithm and the hash was appended to the request message.

The new version comes with two public keys. One key is used for the Elliptic Curve Diffie–Hellman
(ECDH) key exchange protocol while the other is used as part of the signature verification by the
Digital Signature Algorithm (DSA). In this blog post, we’ll be looking at how Emotet uses elliptic curve
cryptography to protect the network communication and verify the authenticity and integrity of the
commands received from its C2.

HOW EMOTET USES
CRYPTOGRAPHY
Malware Analysis Spotlight

FROM VMRAY LABS

1	� Elliptic Curve Diffie–
Hellman (ECDH)

2	� Digital Signature
Algorithm (DSA)

http://www.vmray.com

Elliptic Curve Diffie-Hellman (ECDH) Key Exchange
For the ECDH to work, the two communicating parties need to each have a key pair, a private and a public key.
The public keys are points on an elliptic curve and are generated based on the private keys. The public keys are exchanged,
i.e., known by both parties. For example, if s is a private key and P is a primitive element on the curve, then the public key S
is calculated as sP=S, which is simply adding P to itself a times. The addition is a group operation. If both parties generate their
public keys that way based on known domain parameters, they can calculate the same secret T(SM) (1).

Background
COMPARISON: PAST VS PRESENT
Since the cryptographic part has changed in the newest version of Emotet we are providing a high level overview
of the key steps taken by the older and new versions.

How Emotet Uses Cryptography

© VMRay GmbH. All rights reserved.

2vmray.com

The previous version of Emotet that were using RSA
roughly followed the following steps when encrypting
a message:

1.	 It generates a 128-bit AES key.

2.	 Encrypts it with the server’s public key.

3.	 Constructs the message sent to the server.

4.	 Encrypts the message and hashes the
message.C = SHA1(M) || AES128(M), where C is the
resulting ciphertext and M is the plaintext message

5.	 This results in the following request
packet.R = RSA(AESkey) || C

For the newest version the flow and the packets
it generates are different as seen below:

1.	 It first generates its own ECDH public/private key pair.

2.	 Then it generate an AES key based on a secret
agreement.

3.	 Constructs the message and hashes it.

4.	 Encrypts the resulting payload:
C = AES256(SHA256(M) || M)

5.	 Request packet is then given by:
R = ECDHmal_pub_key || C || <random bytes>

SERVER
serve’s priv key: s
serves’s pub key: S = sP

Compute sM = T(SM)

MALWARE
malware’s priv key: m
malware’s pub key: M = mP

Compute mS = T(SM)

S

M

Figure 1: An example of a DH key exchange algorithm

Implementation
USAGE OF ECDH
The Emotet’s cryptographic components are now utilizing Microsoft’s
Cryptography API: Next Generation (CNG), most notably the BCrypt cryptographic
primitive functions. Initially, the malware decrypts the two embedded public keys of the
server (ECDH and ECDSA). It uses the same decryption method as with other strings.

The keys are saved inside a BLOB structure which consists of a
BCRYPT_ECCKEY_BLOB header immediately followed by the key data
(Figure 2).

struct BCRYPT_ECCPUBLIC_BLOB {
 BCRYPT_ECCKEY_BLOB header;
 BYTE X [cbKey] ; // cbKey = 32
 BYTE Y [cbKey] ;
}

Figure 2: Structure that windows uses
for the ECC public keys

The malware already has the ECDH public key of the server. Its own key pair is generated during the execution.
Analogues to the example above, it can now generate a secret from the public key of the server and its own private key.
Now it only needs to sends its public key to the server for the server to also be able to derive the same secret.

https://link.springer.com/book/10.1007/978-3-642-04101-3
http://www.vmray.com

[0142.698] BCryptOpenAlgorithmProvider (in: phAlgorithm=0x2cf684,
pszAlgId=”ECDH_P256”, pszImplementation=”Microsoft Primitive Provider”,
dwFlags=0x0 | out: phAlgorithm=0x2cf684) returned 0x0
[0142.699] GetProcessHeap () returned 0x530000
[0142.699] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x584858 |
out: hHeap=0x530000) returned 1
[0142.699] GetProcessHeap () returned 0x530000
[0142.699] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x5aca10 |
out: hHeap=0x530000) returned 1
[0142.699] BCryptGenerateKeyPair (in: hAlgorithm=0x5ada28,
phKey=0x2cf680, dwLength=0x100, dwFlags=0x0 | out: hAlgorithm=0x5ada28,
phKey=0x2cf680) returned 0x0
[0142.746] BCryptFinalizeKeyPair (in: hKey=0x584858, dwFlags=0x0 | out:
hKey=0x584858) returned 0x0
[0145.934] GetProcessHeap () returned 0x530000
[0145.934] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0x20)
returned 0x5925b8
[0145.934] BCryptExportKey (in: hKey=0x584858, hExportKey=0x0,
pszBlobType=”ECCPUBLICBLOB”, pbOutput=0x2cf698, cbOutput=0x48,
pcbResult=0x2cf68c, dwFlags=0x0 | out: pbOutput=0x2cf698,
pcbResult=0x2cf68c) returned 0x0

Figure 3: VMRay function log – series of function calls responsible for creating a new EC key pair

The ECDH public key of the server is passed to a function responsible for generating
the symmetric key (256-bit AES key). On a higher-level it can be described by the following steps:

Generate a new ECDH key pair
for the malware.

Derive an AES key from the secret
agreement using SHA256 as the
key derivation function (KDF).

Generate a secret agreement
based on the malware’s private key
and the server’s public key.

In more detail, this function’s first step
is to generate an ECDH key pair that is
unique to the malware sample. It does so
by calling BCryptOpenAlgorithmProvider
to initialize a CNG provider with the AlgId
ECDH_P256 which corresponds to the
prime256v1 or P-256 elliptic curve.

Next, it generates a new key
pair using the combination of
BCryptGenerateKeyPair and
BCryptFinalizeKeyPair. The keys are
then exported into a BLOB using
BCryptExportKey for later use (Figure 3).

How Emotet Uses Cryptography

© VMRay GmbH. All rights reserved.

3vmray.com

Having finalized its key pair, it now
imports the servers public key to be able
to use it in the generation of a shared
secret. It’s using BCryptImportKeyPair
that gets the public key as one of the
arguments and returns a handle to it.

This handle can then be passed to
BCryptSecretAgreement together
with a handle to its own key which it
got in the previous step from calling
BCryptExportKey (Figure 4).

At this stage the secret agreement is
equal to the T(SM) value from Figure
1 and Emotet can start deriving a
symmetric key.

[0145.935] BCryptImportKeyPair (in: hAlgorithm=0x5ada28, hImportKey=0x0,
pszBlobType=”ECCPUBLICBLOB”, phKey=0x2cf688, pbInput=0x551c10,
cbInput=0x48, dwFlags=0x0 | out: phKey=0x2cf688) returned 0x0
[0145.937] GetProcessHeap () returned 0x530000
[0145.937] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x5925b8
| out: hHeap=0x530000) returned 1
[0145.937] BCryptSecretAgreement (in: hPrivKey=0x584858, hPubKey=0x584938,
phAgreedSecret=0x2cf690, dwFlags=0x0
| out: phAgreedSecret=0x2cf690) returned 0x0

Figure 4: VMRay function log – series of function calls responsible for creating the secret agreement

http://www.vmray.com

[0145.939] BCryptOpenAlgorithmProvider (in: phAlgorithm=0x2cf4d4,
pszAlgId=”AES”, pszImplementation=”Microsoft Primitive Provider”,
dwFlags=0x0 | out: phAlgorithm=0x2cf4d4) returned 0x0
[0145.940] GetProcessHeap () returned 0x530000
[0145.940] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x5a4510 |
out: hHeap=0x530000) returned 1
[0145.940] GetProcessHeap () returned 0x530000
[0145.941] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x5ac8f0 |
out: hHeap=0x530000) returned 1
[0145.941] GetProcessHeap () returned 0x530000
[0145.941] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0x10)
returned 0x5ad808
[0145.941] GetProcessHeap () returned 0x530000
[0145.941] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0x10)
returned 0x5ad658
[0145.941] lstrlenW (lpString=”SHA256”) returned 6
[0145.941] BCryptDeriveKey (in: hSharedSecret=0x5ad838, pwszKDF=”HASH”,
pParameterList=0x2cf4f0, pbDerivedKey=0x2cf514, cbDerivedKey=0x20,
pcbResult=0x2cf4d8, dwFlags=0x0 | out: pbDerivedKey=0x2cf514,
pcbResult=0x2cf4d8) returned 0x0
[0145.942] GetProcessHeap () returned 0x530000
[0145.942] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x5ad808 |
out: hHeap=0x530000) returned 1
[0145.942] GetProcessHeap () returned 0x530000
[0145.942] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x5ad658 |
out: hHeap=0x530000) returned 1
[0145.942] GetProcessHeap () returned 0x530000
[0145.942] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0x20)
returned 0x59a0b8
[0145.942] BCryptGetProperty (in: hObject=0x5d3140,
pszProperty=”ObjectLength”, pbOutput=0x58c054, cbOutput=0x4,
pcbResult=0x2cf4d8, dwFlags=0x0 | out: pbOutput=0x58c054,
pcbResult=0x2cf4d8) returned 0x0
[0145.942] GetProcessHeap () returned 0x530000
[0145.942] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x59a0b8 |
out: hHeap=0x530000) returned 1
[0145.942] GetProcessHeap () returned 0x530000
[0145.942] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0x262)
returned 0x5bd868
[0145.942] GetProcessHeap () returned 0x530000
[0145.942] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0x18)
returned 0x584958
[0145.943] BCryptImportKey (in: hAlgorithm=0x5d3140, hImportKey=0x0,
pszBlobType=”KeyDataBlob”, phKey=0x58c000, pbKeyObject=0x5bd868,
cbKeyObject=0x262, pbInput=0x2cf508, cbInput=0x2c, dwFlags=0x0 | out:
phKey=0x58c000, pbKeyObject=0x5bd868) returned 0x0

Figure 5.1: VMRay function log – sequence of BCrypt calls responsible for key derivation

The secret generated from the public key
of the server and the private key of the
malware sample is then used to generate
an AES key. A new CNG provider is
initialized with the AlgId = AES. The key
is then derived using BCryptDeriveKey.

This function takes the secret agreement
as input and generates a key based
on a key derivation function (KDF) and
its parameters which are passed in
the BCryptBufferDesc structure. For
that Emotet uses HASH as the KDF
and passes the SHA256 as the actual
algorithm. This key is then imported
using BCryptImportKey (for symmetric
keys) so that it can also be later used
when encrypting data.

The KeyDataBlob passed as argument
to BCryptImportKey describes the key.
Based on the
BCRYPT_KEY_DATA_BLOB_HEADER
the key data size is 32 bytes, i.e.,
256 bits (Figure 5).

To generate the same symmetric key,
the server needs the public key of
the malware which it prepends to the
request sent to the server.

blobType = (WCHAR *)decrypt_string(761531, (enc_data
*)&dword_100018F8);// KeyDataBlob
keyBlobToImport.header.dwMagic = BCRYPT_KEY_DATA_BLOB_MAGIC;
keyBlobToImport.header.dwVersion = BCRYPT_KEY_DATA_BLOB_VERSION1;
keyBlobToImport.header.cbKeyData = 32;
if (call_BCryptImportKey(
 algo,
 blobType,
 0,
 304369,
 (int)&keyBlobToImport,
 781130,
 (int)&keyBlobToImport,
 422042,
 208490,
 1020292,
 (BCRYPT_KEY_HANDLE *)hEccHeap + 1,
 (PUCHAR)&keyBlobToImport,
 *((PUCHAR *)hEccHEAP + 4),
 460371,
 *((_DWORD *)hEccHeap + 5)))

Figure 5.2: VMRay function log – BCrypt functions used when verifying the response

How Emotet Uses Cryptography

© VMRay GmbH. All rights reserved.

4vmray.com

http://www.vmray.com

[0188.557] BCryptOpenAlgorithmProvider (in: phAlgorithm=0x2cf498,
pszAlgId=”SHA256”, pszImplementation=”Microsoft Primitive Provider”,
dwFlags=0x0 | out: phAlgorithm=0x2cf498) returned 0x0
[0188.557] GetProcessHeap () returned 0x530000
[0188.557] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x5e8960 |
out: hHeap=0x530000) returned 1
[0188.557] GetProcessHeap () returned 0x530000
[0188.558] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x2acc810 |
out: hHeap=0x530000) returned 1
[0188.558] GetProcessHeap () returned 0x530000
[0188.558] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0x20)
returned 0x2aa3ff8
[0188.558] BCryptGetProperty (in: hObject=0x5e0090,
pszProperty=”ObjectLength”, pbOutput=0x2cf4a0, cbOutput=0x4,
pcbResult=0x2cf4a4, dwFlags=0x0 | out: pbOutput=0x2cf4a0,
pcbResult=0x2cf4a4) returned 0x0
[0188.558] GetProcessHeap () returned 0x530000
[0188.558] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x2aa3ff8 |
out: hHeap=0x530000) returned 1
[0188.558] GetProcessHeap () returned 0x530000
[0188.558] RtlAllocateHeap (HeapHandle=0x530000, Flags=0x8, Size=0xb2)
returned 0x2a7ac48
[0188.558] BCryptCreateHash (in: hAlgorithm=0x5e0090, phHash=0x2cf494,
pbHashObject=0x2a7ac48, cbHashObject=0xb2, pbSecret=0x0, cbSecret=0x0,
dwFlags=0x0 | out: hAlgorithm=0x5e0090, phHash=0x2cf494,
pbHashObject=0x2a7ac48) returned 0x0
[0188.558] BCryptHashData (in: hHash=0x2a7ac50, pbInput=0x2a76468,
cbInput=0x8, dwFlags=0x0
| out: hHash=0x2a7ac50) returned 0x0
[0188.558] BCryptFinishHash (in: hHash=0x2a7ac50, pbOutput=0x2cf510,
cbOutput=0x20, dwFlags=0x0
| out: hHash=0x2a7ac50, pbOutput=0x2cf510) returned 0x0
[0188.558] BCryptDestroyHash (in: hHash=0x2a7ac50 | out: hHash=0x2a7ac50)
returned 0x0
[0188.558] GetProcessHeap () returned 0x530000
[0188.559] HeapFree (in: hHeap=0x530000, dwFlags=0x0, lpMem=0x2a7ac48 |
out: hHeap=0x530000) returned 1
[0188.559] BCryptCloseAlgorithmProvider (in: hAlgorithm=0x5e0090,
dwFlags=0x0 | out: hAlgorithm=0x5e0090) returned 0x0
[0188.559] BCryptVerifySignature (hKey=0x584858, pPaddingInfo=0x0,
pbHash=0x2cf510, cbHash=0x20, pbSignature=0x2a76424, cbSignature=0x40,
dwFlags=0x0) returned 0x0

Figure 6: VMRay function log – BCrypt functions used when verifying the response

Usage of the Elliptic
Curve Digital Signature
Algorithm (ECDSA)
The server’s ECDSA public key is used
to verify the response messages the
malware receives. The server’s DSA
public key is imported just like ECDH
public key was.

When an encrypted response from the
server arrives, it is first decrypted with
BCryptDecrypt (no padding is used).

It then calculates the SHA256 hash
of the decrypted data and uses
BCryptVerifySignature to verify the
integrity and authenticity, i.e., that it
matches with the embedded signed
hash – signature (Figure 6).

Conclusion
We have looked at one of the updated components of Emotet which involves the usage of
cryptography. The most obvious element is that the malware developers switched from the RSA
algorithm to using elliptic curves. Emotet has been encrypting its communication for a long time,
but the recent change might be due to a lot of factors like, e.g., smaller key sizes and better security.

The C2’s response is now checked for its integrity and authenticity by using ECDSA with a separate
key. While using ECDH the symmetric key is never transmitted over the wire and instead the server
generates the key from the public key of the malware. We have also observed the switch from
CryptoAPI to CNG, which might be due to the fact that the CryptoAPI has been officially deprecated
or that it simply didn’t support elliptic curve cryptography.

Explore the
IOCs and C&Cs:
www.vmray.com/analyses/ecc-emotet

At VMRay, our purpose is to liberate the world from undetectable digital threats.

Led by reputable cyber security pioneers, we develop best-of-breed technologies to detect
unknown threats that others miss. Thus, we empower organizations to augment and automate
security operations by providing the world’s best threat detection and analysis platform.

How Emotet Uses Cryptography

© VMRay GmbH. All rights reserved.

5vmray.com

http://www.vmray.com/analyses/ecc-emotet
http://www.vmray.com

Annex

IOCs
Initial Sample
7443d5335a207cca176825bd774a412e72882c815206c7f59ace1feb111bb4e9

Server’s ECC keys
ECDH: 86M1tQ4uK/Q1Vs0KTCk+fPEQ3cuwTyCz+gIgzky2DB5Elr60DubJW5q9Tr2dj8/gEFs0TIIEJgLTuqzx+58sdg==

ECDSA: QF90tsTY3Aw9HwZ6N9y5+be9XoovpqHyD6F5DRTl9THosAoePIs/e5AdJiYxhmV8Gq3Zw1ysSPBghxjZdDxY+Q==

References
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-003.pdf

https://www.europol.europa.eu/media-press/newsroom/news/world%e2%80%99s-most-dangerous-malware-emotet-disrupted-
through-global-action

https://cyber.wtf/2021/11/15/guess-whos-back/

https://blog.malwarebytes.com/threat-intelligence/2021/11/trickbot-helps-emotet-come-back-from-the-dead/

https://link.springer.com/book/10.1007/978-3-642-04101-3

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/

https://nakedsecurity.sophos.com/2017/08/10/watch-out-for-emotet-the-trojan-thats-nearly-a-worm/

https://unit42.paloaltonetworks.com/unit42-malware-team-malspam-pushing-emotet-trickbot/

https://www.virusbulletin.com/virusbulletin/2019/10/vb2019-paper-exploring-emotet-elaborate-everyday-enigma/

https://docs.microsoft.com/en-us/windows/win32/seccng/about-cng

https://docs.microsoft.com/en-us/windows/win32/seccng/cryptographic-primitives

https://docs.microsoft.com/de-de/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_ecckey_blob

How Emotet Uses Cryptography

© VMRay GmbH. All rights reserved.

6vmray.com

https://www.cert.ssi.gouv.fr/uploads/CERTFR-2021-CTI-003.pdf
https://www.europol.europa.eu/media-press/newsroom/news/world%e2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.europol.europa.eu/media-press/newsroom/news/world%e2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://cyber.wtf/2021/11/15/guess-whos-back/
https://blog.malwarebytes.com/threat-intelligence/2021/11/trickbot-helps-emotet-come-back-from-the-dead/
https://link.springer.com/book/10.1007/978-3-642-04101-3
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://nakedsecurity.sophos.com/2017/08/10/watch-out-for-emotet-the-trojan-thats-nearly-a-worm/
https://unit42.paloaltonetworks.com/unit42-malware-team-malspam-pushing-emotet-trickbot/
https://www.virusbulletin.com/virusbulletin/2019/10/vb2019-paper-exploring-emotet-elaborate-everyday-enigma/
https://docs.microsoft.com/en-us/windows/win32/seccng/about-cng
https://docs.microsoft.com/en-us/windows/win32/seccng/cryptographic-primitives
https://docs.microsoft.com/de-de/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_ecckey_blob
http://www.vmray.com

How Emotet Uses Cryptography

© VMRay GmbH. All rights reserved.

Contact Us

Email:	 sales@vmray.com
Phone:	 +1 888 958-5801

VMRay GmbH

Universitätsstraße 142
44799 Bochum ♦ Germany

VMRay Inc.

22 Boston Wharf Road, 7th Floor
Boston, MA 02210 ♦ USA

vmray.com

mailto:sales%40vmray.com?subject=Contact%20Sales%20VMRay
http://www.vmray.com

