
WINTER 2020

TECHNOLOGY WHITEPAPER

www.vmray.com | +1 888-958-5801 | ©VMRay, 2020

TECHNOLOGY WHITEPAPER
Hypervisor-based monitoring for
malware analysis and threat detection

EXECUTIVE SUMMARY
Behavior-based malware analysis has been an
established approach for analyzing and detecting
threats for over a decade, and is the core function of
security solutions defined as “network sandboxing”.
The established methods use either emulation or
hooking and are showing their age. Each method has
serious shortcomings that malware authors are adept
at leveraging. While emulating an operating system is
slow, complex and doesn’t scale, hooking requires
instrumentation of the analysis environment – the
resulting modifications can be easily detected by
malware.

In this whitepaper we look at the technology behind
VMRay – hypervisorbased system monitoring – and
explore why this new approach overcomes the
performance and detection issues associated with
hooking and emulation. By moving monitoring to the
hypervisor level, the target machines used for analysis
can run completely unmodified – there is nothing for
malware to detect. By combining this with VMRay’s
innovative monitoring method, this approach delivers
substantial performance and scalability advantages
over other methods. Equally importantly it provides
full visibility into threat behavior.

NETWORKING SANDBOXING -A PRIMER
Sandboxing is a broadly used term that is often
applied to desktop or browser sandboxes – secure
execution spaces for safely running apps, opening
docs or visiting websites. However, in this context we
are concerned with network sandboxing – dedicated
environments for controlled execution and analysis of

files. Network sandboxes use automated behavior-
based analysis. That is, the file is dynamically
analyzed as it executes in something approximating a
native desktop or server environment where the file
would be expected to run. This is also referred to as
‘detonation’.

By contrast, static analysis is where a suspect file is
parsed and the file properties as well as individual
segments and strings are examined. For automated
detection purposes, such as comparing the hash of a
suspect file against whitelists and blacklists, static
analysis is highly scalable. However, malware authors
easily evade this by using encryption, polymorphism,
and code obfuscation. Statically dissecting such files
can’t be automated and manual analysis is extremely
time-consuming.

While most network sandboxes also contain some
mix of static analysis components, their power mostly
stems from the dynamic behavior-based analysis.
Only dynamic analysis is capable of automatically
handling encrypted and obfuscated zero-day malware
that is used in targeted attacks including APTs.

Figure 1 - Static analysis tool screenshot

During dynamic analysis, a suspicious file is executed
in the analysis environment and the system monitors
its activity and builds a report. Usually some
post-processing steps are performed afterwards on
the reports, e.g., filtering may be necessary to reduce
‘noise’ from the normal activity of concurrently

www.vmray.com | +1 888-958-5801 | ©VMRay, 2020

Figure 2 - Behavior-based analysis generates information about what happened
during execution of the malware, such as this process graph

running benign applications and highlight behavior
indicative of malware. Furthermore, some kind of
scoring is applied against the results to autonomously
decide whether the file was malicious or not.

The goal is to get an accurate profile of what the
malware would be doing if it were executing on its
intended victim machines ‘in the wild’. Effective
dynamic analysis needs to be:

• SCALABLE – No matter the approach, executing
each sample in different environments can take time,
typically a couple minutes for hooking, or
substantially longer for emulation. The ability to
quickly spin up multiple environments and analyzing
in parallel is key.

• DETECTION AND EVASION RESISTANT –
Anti-analysis techniques are pervasive in malware. If
no malicious activity is shown during the analysis,
threats can be missed.

• FLEXIBLE – targeted attacks will look for particular
combinations of OS, applications, localization and
geo location before executing maliciously. Otherwise
they will often simply go to sleep, negating any
effective analysis.

EMULATION-BASED ANALYSIS
Available commercially for over a decade, products
using this approach either emulate the operating

system (OS emulation), or the underlying hardware
(system emulation). OS emulation is trivially simple to
evade and is usually not used as a standalone solu-
tion anymore. In the case of system emulation, the
complete hardware system is emulated that the OS
needs to run on –primarily of course the CPU and
memory. The biggest disadvantage of this approach
is its level of computing complexity, which results in
very poor runtime performance. In order to speed up
the analysis, practical real-world systems have to take
a lot of shortcuts and simplifications. This leads to
reduced visibility into the malware’s behavior and still
results in systems that are far slower than other
non-emulated ones. Furthermore, with the complexity
of today’s CPUs, there are inevitably semantic and
timing differences between the emulated and the
native system. These imperfections often lead
to detectability by malware.

Figure 3 - In full system emulation, the CPU
instruction set and memory of one CPU type can be emulated
while residing in a native OS on another type of (physical) CPU

Emulated Target
System 1

Emulated Target
System 2 ...

...Hardware Hardware

Emulator 1 Sandbox
Monitor 1

Sandbox
Monitor 2Emulator 2 ...

Host OS

Hardware (CPU, RAM Devices)

www.vmray.com | +1 888-958-5801 | ©VMRay, 2020

HOOKING-BASED ANALYSIS
To overcome the performance issues of emulation a
different approach for sandboxing has been
developed that is prevalent today. The idea is not to
emulate a system, but instead use a real one to
execute the suspicious file inside it. In order to moni-
tor its activity and changes made, the underlying
systems need to be instrumented. The most common
method of such instrumentation is called hooking and
it works by intercepting certain function calls through
a hook function. Usually it isn’t the complete system
that is hooked, but only a small subset of the security
related APIs and system calls. The reason for this
limitation is that the more function calls are intercept-
ed, the slower the system gets.

Figure 4 - Possible hooking locations in Windows

With hooking-based analysis, detection is trivial in
most cases as the modifications have to be placed in
memory that is (directly or indirectly) accessible by
the executed malware.
Avoiding detection and evasion by malware becomes
a race to the bottom but within the OS there is only so
low you can go. No matter the steps taken to obfus-
cate, the target environment needs to be modified to
gain visibility and a footprint is left that can be
detected.
Hooking can be implemented on bare metal systems
but for ease of use, scale and isolation virtually all

commercial solutions implement hooking in
virtualized target machines (VMs).

DOWN TO THE HYPERVISOR

Emulation fails to scale. Hooking is inevitably
detectable. In the quest to have scalable, automated
dynamic analysis of malware in a way that can’t be
detected or evaded, we’re left with one logical place to
go – the hypervisor.

Figure 5 - VMRay runs on a type 2 hypervisor - hypervisor +
OS + hardware kernel

The hypervisor is the underlying computing platform
that creates, runs, and manages virtual machines on
the underlying hardware. Most sandboxing solutions
use a hypervisor as a launch pad for either the
emulators or virtual machines that are hooked and
monitored.
At VMRay we took a different approach – monitor the
activity of the target machine entirely from the outside
by using Virtual Machine Introspection (VMI). VMRay
combines virtualization extensions with an innovative
monitoring concept called Intermodular Transition
Monitoring (ITM) to deliver agentless monitoring of
VMs running native OS without emulation or hooking.

VMRay runs as part of the hypervisor on top of the
host OS which in turn is running on bare metal.

Each component is independent – so theoretically
VMRay can run on different hypervisor and hardware
combinations.

Native Target System

Sandbox
Monitor

Other
Running

Processes
Malware

Processes

API Hooks

Syscall Hooks

Driver Hooks

Device Drivers

OS Kernel

OS API

Visible
Hooks

Sandbox
Visible in

the System

Hardware (CPU, RAM Devices)

www.vmray.com | +1 888-958-5801 | ©VMRay, 2020

SEE EVERYTHING – TOUCH NOTHING
Most CPUs today support MMU (Memory Manage-
ment Unit) virtualization in hardware and provide
Second Level Address Translation (SLAT) to greatly
speed up memory access in the guest.

VMRay leverages this technology to:

objects, VMRay always intercepts at the highest
semantic level possible. No semantic information is
lost.

Furthermore, VMRay automatically tracks
propagation of analyzed, dropped, or downloaded
code, survives reboots, and only monitors those parts
of the system that are actually related to the analysis.
This make it unnecessary to do filtering on the analy-
sis output as no side-effects of benign applications
are ever monitored (for example, Word startup,
browser code, background services).

As a consequence, the resulting reports always have
the highest possible relevant information density

CONCLUSION
Effective dynamic analysis and threat detection
depends on successfully addressing:

SCALABILITY: An effective analysis approach is
rendered useless in practice if it cannot be automated
and scaled up to handle the quantity of unique threats
organizations must deal with.

EVASION RESISTANCE: Traditional security
solutions engage in an endless and ultimately
unwinnable arms race with malware authors.
As malware adopts one anti-analysis approach
to the point of pervasiveness, vendors respond but
then must adapt themselves to the next
anti-analysis technique. There’s no positive outcome
for technologies that modify the target analysis
environment and are inherently detectable.

FULL VISIBILITY: The trade-off for scalability is
often incomplete or inaccurate results. Yet threat
intelligence is only actionable effectively if the results
can be relied upon to be complete and accurate.

Transparently monitor all interaction between the
monitored malware and any other part of the
system
Monitor entirely externally to the analysis
environment without the need to modify a single bit
in the analysis environment
Rarely interrupt the malware’s execution and far
less frequently than existing sandboxing
technology approaches –increasing performance
and scalability

1.

2.

3.

To get a comprehensive result when monitoring
malware execution, the analysis system must
capture:

All control flow mechanisms
• All forms of calls to APIs and private functions
of the OS; direct system calls; interrupt handler
routines, asynchronous and deferred procedure
calls and more.
All calling conventions
• Regular function calls; shellcode execution on the
heap or stack; unaligned function calls in which
the malware skips the first instructions of an API
to circumvent potential hooks; invocation of COM
object methods and more.
All privilege levels
• Ring 3 (userland) and ring 0 (kernelland) code.

1.

2.

3.

Unlike other approaches, VMRay uses adaptive
monitoring to automatically adjust to the optimum
monitoring granularity. That means regardless of
whether the malware is doing an API call, using
special CPU instructions to directly jump into the
kernel, or using higher-level concepts such as COM

www.vmray.com | +1 888-958-5801 | ©VMRay, 2020

OS, APPLICATION AND HARDWARE INDEPENDENCE:
Each application an enterprise runs, each file type that
can execute, represents an additional threat vector. A
necessary feature for an effective sandboxing
solution is the ability to fully customize the target
machines.

AUTOMATED SCORING: An accurate, complete
analysis can overwhelm the most skilled and efficient
incident response professional if the system doesn’t
have the ability to filter out the results of normal,
nonmalicious activity from the truly malicious. Further,
the system needs to provide an interpretation of the
degree of risk associated with each identified mali-
cious behavior. This interpretation, or score, is a
pre-requisite for turning the analysis into actionable
intelligence that can be used for automated blocking
and remediation. Traditional sandboxing technologies
(emulation, hooking) all make compromises on some
of these criteria in order to address others. There is
always a trade-off between comprehensiveness and
sophistication of the result and scalability, while
sacrificing invisibility. Only VMRay’s 3rd generation
approach of moving to the hypervisor and embedding
all monitoring at that layer can successfully analyze
and detect at scale while evading anti-analysis from
malware. VMRay Analyzer is successfully deployed in
the most demanding analysis environments at some
of the largest enterprises and technology vendors
globally, proving in the real world the validity of the
VMRay approach.

In building our best-of-breed solution, the VMRay

team draws on a deep reservoir of malware

expertise and close ties to top DFIR groups

across the globe. VMRay is based in Bochum,

Germany, with offices in Boston, MA and a

growing worldwide channel partner network.

Let’s Talk...
Contact us at sales@vmray.com

or call +1 888-958-5801 (N. America)

About

	TechWhitepaper(Cover).pdf
	TechWhitepaper(page1).pdf
	TechWhitepaper(page2).pdf
	TechWhitepaper(page3).pdf
	TechWhitepaper(page4).pdf
	TechWhitepaper(page5).pdf

