
Anti-Sandbox Evasion
Why Defeating Anti-Sandbox Evasion Checks
is Critical for Successful Sandbox Automation

SOLUTION BRIEF

Table of Contents
Introduction��5

Circumventing Enterprise AV Security Controls��5

The Different Types of Sandbox Technology��6

Circumventing Sandbox Detection – Anti-Sandbox Evasion��8

Common Detection Challenges ��8

Not All Sandboxes Are Created Equal��9

Anti-Sandbox Evasion Checks and How to Resist Them��9

Exploiting Sandbox “Detection” Checks ��9

Detecting Virtualization/Hypervisor ��10

Detecting Sandbox Artifacts ��10

Using Vendor-Specific Knowledge���10

Old Vs. New Sandboxing Technologies for Detection��11

Defeating Sandbox “Detection” Checks��12

Attacking Sandbox “Technology” Weaknesses ��12

Blinding the Monitor ��13

File Size Bloating��14

Reserved Characters in Filename��14

Defeating Sandbox “Technology” Weaknesses ��14

Exploiting “Context-Aware” Evasion Techniques��15

Time Bombs��15

System Events��15

User Interaction��16

Fake Installers ��16

Office Documents with Malicious Embedded Content��16

Detect a Specific Target System��16

Simple Checks Including String Checks��16

Defeating “Context-Aware” Evasion Techniques ��16

Conclusion: The Last Line of Defense ��17

About VMRay ��18

Ready for the next step?��18

Portfolio��18

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

2

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

3

Introduction
Over the last ten years, malware sandboxes have become critical in the defense of
Enterprise networks by identifying zero-day malware and phishing threats that bypass other
security controls. Perimeter and desktop Anti-Virus solutions typically use a combination
of reputational, static, and heuristic analysis which malware authors have learned over time
to disable and bypass.

Considered the last line of defense to stop new malware threats, malware sandbox
technology has evolved from an obscure research tool to become a critical part of the
Enterprise security stack. To counter the threat that sandboxes pose in stopping the
proliferation of malware in its tracks, the authors of advanced modern malware families
have engineered pre-payload deployment checks to assess if the malware is being
detonated in a monitored sandbox environment or not.

Known as Anti-Sandbox evasion checks, malware implementing these techniques can stop
or stall payload deployment in kernel-mode and hooking-based sandboxes because the
malware can identify specific indicators within the detonation environment. With hundreds
of different environmental checks, advanced modern malware can evade a sandbox if
a predefined list of checks are not met. This makes the submitted file or URL appear
suspicious or benign, requiring manual triage by a Tier 3 Security Operations Center (SOC)
Analyst to validate, often taking hours or days to investigate.

Circumventing Enterprise AV Security Controls
A major cause of corporate IT disruption stems from advanced unknown malware,
phishing, and custom crafted attacks. Advanced modern malware is decidedly different
from those detected by traditional signature-based anti-malware solutions as the
malware is engineered to avoid detection using sophisticated evasion techniques such as
obfuscation using packing to alter the file hash, or string encryption within the binary files
themselves. Once past the detection engine, the malware can “unhook” the APIs used by
the AV engine and effectively disable it. Even with the improvements in heuristic analysis
and phishing detection, malware and phishing attacks continue to be the most successful
attack vector to infiltrate the enterprise.

Static detection signatures filter out known threats and heuristic engines go some way in
flagging known malicious artifacts in previously unknown malware. However, this detection
process is not foolproof even with hourly updates, as bad actors continually change
malware to make it unidentifiable to existing detection methodologies.

Malware is becoming
more evasive,
avoiding detection
by perimeter and
endpoint security
controls.

Sandboxes expose
the inner workings of
malware, and identify
behavior that can
mitigate the threat

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

4

Currently, the only way for an organization to accurately identify unknown malware is to
detonate the payload in a safe, controlled environment like a malware Sandbox, analyze the
results, and extract the indicators of compromise (IOCs) and other artifacts. The extracted
IOCs can then be used to create signatures for future detection and update mitigating
controls such as firewalls and intrusion detection systems. While AV and Anti-Malware
evasion is slightly different from Anti-Sandbox evasion, the goal remains the same –
to avoid detection.

The Different Types of Sandbox Technology
There are significant differences in the architecture and implementation of monitoring
technology which make some sandboxes better than others. The architecture can affect
the speed of analysis, requirements for scalability, performance for full automation,
and importantly, the many ways modern malware families can evade sandbox detection.
All of these factors should play a critical role in the decision-making process and must be
considered by the SOC when implementing a sandbox technology-based solution. The three
main approaches used in sandbox architectures today include outdated emulation, older
hooking or “kernel-mode” analysis, and today’s superior hypervisor-based analysis

Traditional sandbox techniques such as emulation or hooking-based analysis do not work
well when detecting evasive threats. This is due to tools or variables within the detonation
environment that are detectable by the malware. To counter this, the only way to ensure
malware detonation is to provide an environment free of any indicators that would inform
the malware that it is potentially being monitored.

Secure
Email

Gateway

Reputation

Ransomware

APT

Polymorphic
Malware

AV Scan Heuristic Sandbox

Mail
System UserInternet /

Cloud

Figure 1. Evasive malware and phishing attacks can only be detected using sandbox technology.

Hooking and kernel-
mode sandboxes
have detectable
instrumentation
within the monitoring
environment.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

5

The hypervisor is the underlying computing platform that creates, runs, and manages

virtual machines on bare-metal hardware. VMRay solutions run their monitoring technology

in the hypervisor, providing visibility from outside the workload by using Virtual Machine

Introspection (VMI). By running in the hypervisor and not the detonation environment,

malware is unable to identify any indicators that would signal a monitoring environment,

fooling the malware into payload detonation.

VMRay’s Intelligent Monitoring provides untainted visibility into the malware or phishing

sample’s payload actions during and after detonation. The collected observations of

sample behavior are then passed to the automated analysis process for extensive

evaluation using 30+ different analysis technologies.

File
System

VBox

Registry

WMI

Checking Presence of VirtualBox Service

Checking Reg Key HARDWARE\Description\System – SystemBIOSVersion

Checking C:\Windows\System32\VBox

Checking
SIM_ Slot With WMI

Figure 2. Hooking and Kernel-mode sandboxes have detectable artifiacts, causing malware to “sleep”.

Registry

WMI

Checking
C:\Windows\System32\VBoxControl.exe

File
System

VBox Checking Presence of VirtualBox Service

Hypervisor Monitoring

Checking
SIM_ Slot With WMI

Checking Reg Key HARDWARE\Description\System – SystemBIOSVersion

Figure 3. Hypervisor-based sandboxes monitor outside the detonation environment, with no detectable artifiacts.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

6

Circumventing Sandbox Detection – Anti-Sandbox Evasion
Unfortunately for malware authors, sandboxes reveal the behavior and inner workings
of malware and phishing attacks. The knowledge of how malware works can ultimately
be used to defeat it. Obviously, malware authors want their code to propagate far
and wide and infect as many systems as possible, compromising sensitive data or
encrypting disks to ransom their victims. Malware sandboxes are key to identifying the
Indicators of Compromise (IOCs) needed to block propagation and shorten the malware
lifecycle considerably.

Malware authors began to write environment checks into their code to identify some
sandboxes prior to payload detonation, making their malware “sandbox aware”.
Raccoon v2, Emotet, TrickBot, and BumbleBee are just four malware families engineered
to run Anti-Sandbox evasion checks to determine whether the malware is being run
(or detonated) in a monitored environment. In most cases, commercial malware sandboxes
are run as virtual machine. Malware authors have access to over 200+ environmental
checks they can use to determine if a system environment is either a sandbox or a virtual
machine. Primarily, Anti-Sandbox evasion can be broken down into three basic categories:
Detection, Attack, and Context-Aware.

Common Detection Challenges

The most dangerous malware is not only based on the maliciousness of the payload,
but the intelligence it uses to hide and evade detection. Modern malware families are
designed to bypass known security controls within email systems, secure email gateways,
content inspection on firewalls, and IDS/IPS detection. Advanced malware requires certain
conditions prior to activation and payload deployment. If these conditions are not met,
the malware lays dormant until all the predefined conditions are in place.

The detection of a sandbox environment by the malware will suspend any activity,
denying the sandbox the ability to identify malicious code, including:

Delays the connection to
Command & Control Servers

Delays the modification
or injection of code

Delays the download
of additional code

Delays any network-based
propagation actions

In addition, some evasive malware will also require additional conditions prior to
activation, such as user interaction, hibernation, geolocation, and/or username. Advanced
sandboxes – such as VMRay’s – can simulate human behavior using AI/ML, which is highly
effective in deceiving malware to detonate where other sandbox architectures would fail.

On detecting
a monitored
environment,
the malware lays
dormant and
miscategorized as
benign.

On average, modern
malware families use
5-6 evasion checks
to identify sandbox
or VM environments.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

7

Not All Sandboxes Are Created Equal

Malware that is “sandbox aware” can lead to stalled analysis, partial detonations, and
inconsistent threat scores in some kernel-mode or hooking-based sandboxes. These
failures are often due to multiple detectable exposures in the sandbox monitoring
environment where the malware decides not to detonate – making a malicious file appear
benign. The lack of detonation leaves SOC Analysts with a false sense of security and puts

an organization at risk of an outbreak.

When evaluating a sandbox technology for full automation in the SOC, Anti-Sandbox
evasion resistance is perhaps one of most important aspects to consider. By minimizing
the chances of evasion check failures by monitoring from the hypervisor, there are
no submission queue stalls, no malicious samples miscategorized as benign, and a
significantly reduced need for Tier 3 manual triage if the sandbox is ever evaded. Clearly,
this is not the case when utilizing hooking or kernel-mode sandboxes.

Anti-Sandbox Evasion Checks and How to Resist Them
Malware authors are always looking for new, innovative ways to evade sandbox detection
by concealing the real behavior of the malware. Other than detecting a sandbox
environment, malware can also attack or exploit shortcomings in the sandboxes attempts
to automate the analysis.

Exploiting Sandbox “Detection” Checks

As previously mentioned, some sandbox environments such as hooking- or kernel-mode
sandboxes come with indicators in their detonation environment of that are un-maskable,
such as memory or system file artifacts. Going more in-depth from a technical perspective,
the following checks are just some examples of how malware can evade sandbox analysis
to appear benign.

EDR / XDR
“Suspicious”

Malware Alerts

High Volume Alert
Environment

Large Enterprise / MDR

Sample Submission Queue

Escalate to Tier 3
Malware Analyst
for Manual Triage

1 – 3 hours
per Sample

File
System

VBox

Registry

WMI

Hooking / Kernel-mode
Sandbox

Malware Detects Instrumentation
in Detonation Environment
Malware Hibernates / Sleeps

Benign
Verdict

Stalled
Analysis

Partial
Detonation

Analysis
Timeout

Stalled
Sample Queue

Figure 4. Hooking and kernel-mode sandboxes can stall sample submission queues and require more manual triage.

VMRay uses best-
in-class Hypervisor-
based sandbox
technology, hardened
against Anti-Sandbox
evasion techniques.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

8

Detecting Virtualization/Hypervisor

This is one of the oldest evasion techniques. However, it is less relevant today as many
production environments (workstations and servers) are virtualized anyway and virtual
machines (VMs) are no longer only used just by researchers and malware analysts. The
earliest approach detected technical artifacts that existed due to the lack of full hardware
support for virtualization (Paravirtualization).

These techniques include:

	s Detecting artifacts of popular VM hypervisors

	s Detecting generic hypervisor artifacts

These artifact detection techniques are not very effective today. With hardware
virtualization support, there are very few visible artifacts (if any) inside the VM since most
hardware aspects are now virtualized and handled by the CPU itself. Therefore, they do not
have to be simulated by the hypervisor.

One approach that is still relevant today is detecting the implementation artifacts
of the hypervisor. For example, VMWare (“port 0x5658”) or VirtualBox via a backdoor
(“invalid opcode”). Another approach is to detect the presence of a VM by looking at
registry values. In one example, the malware queried the registry key
“HKEY_LOCAL_MACHINE\SOFTWARE\” to look for values associated with common
VM implementations like VMWare.

Detecting Sandbox Artifacts

In this approach, it is not the hypervisor that the malware is trying to detect, but the
sandbox itself. This can be done either by two of the following techniques:

Using Vendor-Specific Knowledge

Common VM Products: For example, the existence of certain files, processes, drivers,
file system structure, Windows ID, or username.

The Ecosystem: For example, mechanisms to revert the analysis environment back to
a clean state after infection (Deepfreeze, Reborn Cards, etc.). In addition, performing
communication with the sandbox controller by adding additional listening ports and
detecting the specific network environment.

With VMRay, no more
stalled analysis,
partial detonations,
or analysis timeouts
that inhibit full
automation.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

9

Old Vs. New Sandboxing Technologies for Detection

Most older sandboxes use hooks by injecting or modifying code and data within the
analysis system. The ‘hook’ is essentially a shim layer capturing the communication
between processes, drivers, and the OS. A hook can be implemented in many ways such as
inline hooks, IAT, EAT, proxy DLL, or filter drivers. This makes them detectable by explicitly
inspecting certain instructions or pointers or verifying the integrity of the system such as
hash signatures of relevant system files.

Other malware sandboxes use emulation, which comes with side-effects and small
differences compared to a native system. This includes different instruction semantics
and cache-based attacks. Emulation gaps can be detected by invoking an obscure CPU
instruction that was not included in the emulation. When the call fails, malware will know
it is running in an emulated environment.

An example of vendor-specific detection is where the malware looks for the presence of
the module “SbieDll.dll” – an indicator that it would be running in under Sandboxie,
a common sandboxing environment.

Detecting An Artificial Environment
Sandboxes are usually not production systems but specifically set up for malware
analysis. Hence, they are not identical to real computer systems and these differences
can be detected by malware.

Differences may include:

	s Hardware / Software / System / User properties

	s Unusually small screen resolution, no USB 3.0 drivers, lack of 3D rendering
capabilities, only one (V)CPU, small HDD size and memory size

	s Atypical software stack, with no IM client or mail client

	s System uptime (“system was restarted 10 seconds ago”), network traffic
(“system uptime is days, but only a few MB have been transmitted over the network”),
no printer or only default printers installed

	s Clean desktop, clean filesystem, no cookies, no recent files, no user files

For example, in addition to checking for VM presence, some malware will also look for
the presence of Wine, a software emulator. The malware does this by executing a query,
GET_PROC_ADDRESS and attempts to determine from the returned result something
that is expected in a Wine environment.

Timing Based Detection
Monitoring the behavior of an application comes with a timing penalty, which can be
measured by malware to detect the presence of a sandbox by checking for RDTSC, the
time-stamp counter. Sandboxes try to prevent this by faking the time. However, some
malware can bypass this by incorporating external time sources such as NTP.

Faster sample
detonation aids
automation with
detailed reporting to
speed investigations.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

10

Defeating Sandbox “Detection” Checks

In order to evade these types of detection by malware, an analysis environment should:

	s Not rely on modifying the target environment

	s Show the presence of a hook. It is virtually impossible to completely hide the presence
of a hook.

	s Either implement full system emulation perfectly or not at all

	s Just as all software has bugs, it’s a near certainty that any given emulation environment
will have flaws that can be detected and profiled

Use a Target Analysis Environment That is ‘Real’

If the malware sandbox can run an image copied from actual production endpoints,
then the risk of detection falls dramatically. As we wrote earlier in this post, coupling that
with randomization of the environment helps to ensure that there are no tell-tale signs
for malware to identify the target environment as ‘fake’.

VMRay’s technology ensures that there is a minimal attack surface for malware to
detect it is running in a sandbox. By not modifying the target environment, not relying
on emulation, and allowing real-world images to run as the target environment, VMRay
gives nothing for malware to flag it as a sandbox environment.

Attacking Sandbox “Technology” Weaknesses

Malware authors often seek to bypass sandbox analysis by directly attacking and exploiting
weaknesses in the underlying technology or in the surrounding ecosystem. For example, we
have seen in the past a large volume of malware samples using Microsoft COM internally
because most sandboxes cannot correctly analyze these files.

Other malware will use obscure file formats that cannot be handled by the sandbox, or they
exploit the sandbox’s inability to process files that exceed a certain size. A good example of
this is OneNote file format from Microsoft that many sandboxes do not currently support.
After Microsoft disabled macros by default in Word and Excel Office documents, threat
actors began turning to the embedded OneNote file format to bypass AV detection as well
as sandbox analysis.

In some cases, malware can be seen ‘blinding the monitor’ by performing illegitimate API
usage. API-hammering is just one technique used where the file being analyzed makes
thousands of Windows API calls, putting the sandbox under extreme duress to degrade
the analysis performance in a form of extended “sleep”. This can be an effective method to
hide from malware sandboxes that rely on a hook or driver injected into the target machine.
However, since VMRay does not use hooking, these evasion attempts are easily detected.

Explicitly searching for the existence of a sandbox can be detected as a suspicious activity
during analysis. A more advanced approach for malware, therefore, exploits weaknesses in
the sandbox technology itself to perform operations without being detected. By exploiting
these sandbox weaknesses, malware does not have to worry about being detected even if it
is being executed in a sandbox system.

Modern malware
families can identify
sandbox and virtual
environments and
adapt their behavior
to look benign.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

11

Some of the techniques include:

Blinding the Monitor

Most sandboxes do in-guest-monitoring, (i.e., they place code, processes, and/or hooks)
inside the analysis environments. If these modifications are undone or circumvented,
the sandbox is blinded – in other words, visibility into the analyzed environment is lost.
This blinding can take the following forms:

Hook Removal
Hooks can be removed by restoring the original instruction or data.

Hook Circumvention
Hooks can be circumvented by using direct system calls instead of API calls, such as
calling private functions (which are not hooked) or performing unaligned function calls
(skipping the “hook code”). While hooks could solve this problem for these particular
internal functions, there are many of these present in the operating system and they vary
with each Windows version. Furthermore, the problem of unaligned function calls cannot
be adequately solved by hooking.

System File Replacement
Hooks usually reside in the system files that are mapped into memory. Some malware
families will un-map those files and reload them. The newly loaded file version is
then “unhooked”.

Kernel Code
Many sandboxes are not capable of monitoring kernel code or the boot process
of a system.

Obscure file formats
Many sandboxes do not support all file formats. OneNote, PowerShell, .hta, and .dzip
are some examples of file formats that may slip by and simply fail to execute in a
sandbox environment.

Many Sandboxes Do Not Support All Technologies
While the initial infection vector (for example, a Word document with a macro) may open
and the macro run in the sandbox, the macro will download and run a payload that uses
an obscure technology hidden from the analysis. COM, Ruby, ActiveX, JAVA are just
some examples.

Operating System Reboots
Many sandboxes cannot survive a reboot. Some systems try to emulate a reboot by
re-logging in the user. This can be detected by the malware when not all triggers of a
reboot are executed.

Blinding the Ecosystem
By simply overwhelming the target analysis environment, malware can also avoid
analysis with this crude but sometimes effective approach. For example, some
sandboxes only support files up to a certain size, for example, 10 MB and others
don’t support multiple compression layers.

Hooked Call

0x00: call API

0x00: jmp Hook

0x05: push ecx
0x07: … more …
0xff: ret

A
PI

Unaligned Call

0x00: call API
0x02: mov edi, edi
0x04: push ebp
0x05: mov ebp, esp
0x07: jmp API+0x5

0x00: jmp Hook

0x05: push ecx
0x07: … more …
0xff: ret

A
PI

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

12

File Size Bloating

Many commercial sandboxes have file size limitations on sample submissions (some
free public-facing sandboxes have 100 Mb maximum file size). To circumvent sandbox
submission, malware authors are bloating the size of the file by padding the file with zeros.

Reserved Characters in Filename

Reserved characters cannot be used when creating folders or files due to them being part
of system functions. Malware authors are using these illegal characters in the file name
in the hope that the sandbox will reject the sample.

VMRay will recognize the use of reserved characters and automatically rename the file
prior to submission

Defeating Sandbox “Technology” Weaknesses

In order to ensure malware cannot evade analysis by these methods a sandbox analysis
environment should:

Not Rely on Modifying the Target Environment: A common approach for sandbox
analysis is hooking. That presence of a hook (the injected user-mode or kernel-level
driver that monitors and intercepts API calls and other malware activity) gives malware
the opportunity to disable analysis.

Run Gold Images as Target Analysis Environments: For efficiency and convenience,
many sandboxes have a ‘one size fits all’ approach. A single type of target environment
is used for all analyses. A better approach is to use the actual gold images (that is,
the standard and server OS and application configurations that your enterprise uses)
as the target environment. That way, you can be assured that any malware that is
targeting your enterprise and could run on your desktops or servers will also run in the
analysis environment.

Monitor all malware-related activity, regardless of application or format:
Some malware sandboxes, particularly those using a hooking-based approach, take
shortcuts and compromises for the sake of efficiency in determining what activity
is monitored. This can leave blind spots.

VMRay’s technology accommodates all these scenarios. When used in conjunction with
using real-world VM images as the target analysis machines, VMRay gives full visibility into
malware activity, regardless of attempts by the malware to obfuscate its intentions.

Confidently automate
response actions
to incidents with
accurate analysis and
definitive verdicts.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

13

Exploiting “Context-Aware” Evasion Techniques

Effective Analysis Time

TimeSandbox Timeout

Malware
Execution

Figure 5. On detecting a check, malware can hibernate for a random amount of time, making it appear benign.

Some malware does not try to detect or attack the sandbox at all. Instead, it exploits the
natural shortcomings of automated analysis or research systems. Because of the high
volumes of unique malware seen in many environments – especially where automation
is needed, sandbox analysis systems usually only spend a few minutes on each file.
By delaying the execution of a malicious payload by a random amount of time, malware
can remain undetected. Besides time-triggers, malware can also use other events that
usually do not occur in a sandbox, for example, initiating a system reboot or detecting user
interaction. Additionally, the malware may be looking for specific triggers present on the
intended target machine, such as a specific application or localization setting.

Triggers can be grouped into seven categories:

Time Bombs

One of the most common techniques is to delay execution for a certain amount of time
since sandboxes usually run samples only for a few minutes. As with many other evasion
techniques, the utilization of time bombs is an ongoing cat and mouse game; the malware
goes asleep, the sandbox tries to detect sleep and shorten the time, malware detects
shortened time, the sandbox tries to hide time forward by also updating system timers
and so on.

Time bomb techniques include:

	s Simple to very complex sleeps; concurrent threads that watch each other or are
dependent on each other.

	s Executing only at a certain time or on a specific date

	s Slowing down execution significantly. An example of this is injecting millions of arbitrary
system calls that have no effect except to slow down execution (API-Hammering),
especially when being executed in a monitored or emulated environment.

System Events

The malware only becomes active only on shutdown, after reboot, or when someone logs
on or off. This is where a second-stage payload is pulled down only after a reboot. An
executable is installed by the malware (the initial payload) that will run automatically on
startup after reboot. It’s the startup executable process that fetches the second payload.

Time triggers
allow malware to
go undetected by
simply delaying its
detonation.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

14

User Interaction

Waiting for mouse movements or keyboard input. Interacting with certain applications,
such as the browser, email, Slack, or an online banking application.

Fake Installers

Malware only becomes active after a user has clicked multiple buttons and checked
various checkboxes.

Office Documents with Malicious Embedded Content

The malicious content only becomes active when the user scrolls down to view it or
clicks on it.

Detect a Specific Target System

Sophisticated targeted malware only works on the intended target system.
The identification is usually based on the current username, time zone, keyboard layout,
IP address, or some other system artifacts. The check itself can be done in various ways,
ranging from simple to very complex methods.

Simple Checks Including String Checks

Complex checks are nearly unbreakable if the expected target environment is not known.
The malware will only proceed to the second stage to download the main payload if it
determines it is in the expected target environment.

Related to this is the inverse scenario where the malware detects that the environment is
most likely an artificial analysis environment. This can be the result of checks such as:

	s If network usage statistics of the system are too low, then don’t do anything

	s If ‘recently used documents’ are almost empty, then don’t do anything

	s If a number of processes are < x, then don’t do anything.

Defeating “Context-Aware” Evasion Techniques

Of the three categories of sandbox evasion techniques commonly used, context-aware
malware is the least sensitive to the underlying malware sandbox technology. As sandbox
technology improves and finds ways to circumvent sandbox detection, environmental
triggers will become increasingly important to malware authors.

It is critical for security teams to ensure they are using target analysis environments that
accurately replicate in every detail the actual desktop and server environments they are
protecting. Furthermore, as we wrote previously, it’s important to have pseudo-random
attributes as part of the target analysis environment.

Generic sandboxes running identical standard target environments are no longer sufficient.
Further, the analysis environment needs to be able to detect environment queries and
identify hidden code branches. VMRay can randomize analysis environments, including
when desktop or server gold images are used as the targets. Additionally, VMRay will flag
when malware is making environment queries. Combined, these ensure that security teams
get the full picture and know when they are dealing with context-aware malware.

Alert enrichment
with threat actor
attribution, IOCs,
artifacts, and VMRay
Threat Indicators.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

15

Conclusion: The Last Line of Defense
To address the threat posed by advanced malware, enterprises are implementing
specialized, resolute teams focused on the detection, analysis, and response to unknown
cyber threats. Whether Digital Forensics and Incident Response (DFIR), Cyber Threat
Incident Analysis (CTIA), SOC Analysts, or Threat Hunters, their goal is the same. That goal
is to identify and observe malware indicators and suspicious activity to mitigate current
and future intrusions.

Threat intelligence feeds and public data sources do provide valuable information on
now-known malware or phishing campaigns, allowing threat analysts to leverage curated
data to thwart attacks before detection signatures become readily available. However,
in the case of high-value, specific targets such as a Government Agency, or a financial
services company, unknown customized attacks may be specifically crafted and unleashed
by bad actors, negating the value of threat feed data to some extent. These crafted, sole
use attacks leave the targeted enterprise with the complex task of creating their own
operational / tactical intelligence. This typically happens using forensic analysis, after the
damage has been done and an attack has succeeded.

Surprisingly, 75% of malware threat intelligence gathering by organizations utilize sandbox
technology to extract the necessary IOCs and artifacts. Those IOCs and artifacts are then
used to strengthen the network and system defenses prior to, during, or after an attack.

If the malware fails to detonate because it has detected a monitored sandbox environment,
the time and costs associated with manual triage of every sample that stalls, fails to fully
detonate, or returns a verdict of benign when suspect, can be staggering. That doesn’t
include the recovery costs should a malicious sample of ransomware incorrectly flagged
as benign inadvertently becomes unleashed upon the network. This is why Anti-Sandbox
evasion resistance in a sandbox is important – especially where full automation and
autonomous responses are required.

Anti-Sandbox evasion resistance alone is a strong argument for boosting Return on
Investment (ROI) and Total Cost of Ownership (TCO), not to mention improving the
economy of SOC services and incident response times to meet organizational or client
Service Level Agreements (SLAs). Speed and accuracy of analysis, as well as clutter free
reporting all play a part, especially when automated workflows are involved, but malware
sandbox evasion could be the one thing that scuttles the dream of full SOC automation.

Increase the success
of threat hunting
programs with clear
IOCs, artifacts, and
uncluttered reporting.

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

16

Portfolio
Our portfolio of products (DeepResponse, FinalVerdict, and TotalInsight) offers the ultimate solution for organizations
looking to overcome their challenges in detecting and responding to malware and phishing threats.

Whether you need to automate alert processing, share industry-specific threat intelligence or build a comprehensive
threat repository, our portfolio has you covered.

VMRay Professional Services

https://www.vmray.com/products/
vmray-totalinsight/

https://www.vmray.com/products/
vmray-finalverdict/

https://www.vmray.com/products/
vmray-deepresponse/

VMRay Public
Threat Feed

https://threatfeed.vmray.com/

Explore 1M+
analysis reports

See DeepResponse
in action

https://www.vmray.com/try-vmray-products/

Request free trial

Ready for the next step?

About VMRay
At VMRay, our purpose is to liberate the world from undetectable digital threats.

Led by reputable cyber security pioneers, we develop best-of-breed technologies to detect unknown
threats that others miss. Thus, we empower organizations to augment and automate security operations
by providing the world’s best threat detection and analysis platform.

We help organizations build and grow their products, services, operations, and relationships on secure
ground that allows them to focus on what matters with ultimate peace of mind. This, for us, is the
foundation stone of digital transformation.

Read more about our solutions at vmray.com

Solution Brief | Why Defeating Anti-Sandbox Evasion Checks is Critical for Successful Sandbox Automation

© VMRay GmbH. All rights reserved.

Contact Us

Email:	 sales@vmray.com
Phone:	 +1 888 958-5801

VMRay GmbH

Suttner-Nobel-Allee 7
44803 Bochum ♦ Germany

VMRay Inc.

75 State Street, Ste 100
Boston, MA 02109 ♦ USA

vmray.com

	 09.23

mailto:Sales%40vmray.com?subject=Contact%20Sales%20VMRay

	Introduction
	Circumventing Enterprise AV Security Controls
	The Different Types of Sandbox Technology
	Circumventing Sandbox Detection – Anti-Sandbox Evasion
	Common Detection Challenges
	Not All Sandboxes Are Created Equal

	Anti-Sandbox Evasion Checks and How to Resist Them
	Exploiting Sandbox “Detection” Checks
	Detecting Virtualization/Hypervisor
	Detecting Sandbox Artifacts
	Using Vendor-Specific Knowledge
	Old Vs. New Sandboxing Technologies for Detection

	Defeating Sandbox “Detection” Checks
	Attacking Sandbox “Technology” Weaknesses
	Blinding the Monitor
	File Size Bloating
	Reserved Characters in Filename

	Defeating Sandbox “Technology” Weaknesses
	Exploiting “Context-Aware” Evasion Techniques
	Time Bombs
	System Events
	User Interaction
	Fake Installers
	Office Documents with Malicious Embedded Content
	Detect a Specific Target System
	Simple Checks Including String Checks

	Defeating “Context-Aware” Evasion Techniques

	Conclusion: The Last Line of Defense
	About VMRay
	Ready for the next step?
	Portfolio

